Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Cell Rep ; 40(1): 111022, 2022 07 05.
Article in English | MEDLINE | ID: covidwho-1885676

ABSTRACT

The COVID-19 pandemic has triggered the first widespread vaccination campaign against a coronavirus. Many vaccinated subjects are previously naive to SARS-CoV-2; however, almost all have previously encountered other coronaviruses (CoVs), and the role of this immunity in shaping the vaccine response remains uncharacterized. Here, we use longitudinal samples and highly multiplexed serology to identify mRNA-1273 vaccine-induced antibody responses against a range of CoV Spike epitopes, in both phylogenetically conserved and non-conserved regions. Whereas reactivity to SARS-CoV-2 epitopes shows a delayed but progressive increase following vaccination, we observe distinct kinetics for the endemic CoV homologs at conserved sites in Spike S2: these become detectable sooner and decay at later time points. Using homolog-specific antibody depletion and alanine-substitution experiments, we show that these distinct trajectories reflect an evolving cross-reactive response that can distinguish rare, polymorphic residues within these epitopes. Our results reveal mechanisms for the formation of antibodies with broad reactivity against CoVs.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Epitopes , Humans , Pandemics , SARS-CoV-2 , Vaccination
2.
CA Cancer J Clin ; 71(1): 34-46, 2021 01.
Article in English | MEDLINE | ID: covidwho-804429

ABSTRACT

The delivery of cancer care has never changed as rapidly and dramatically as we have seen with the coronavirus disease 2019 (COVID-19) pandemic. During the early phase of the pandemic, recommendations for the management of oncology patients issued by various professional societies and government agencies did not recognize the significant regional differences in the impact of the pandemic. California initially experienced lower than expected numbers of cases, and the health care system did not experience the same degree of the burden that had been the case in other parts of the country. In light of promising trends in COVID-19 infections and mortality in California, by late April 2020, discussions were initiated for a phased recovery of full-scale cancer services. However, by July 2020, a surge of cases was reported across the nation, including in California. In this review, the authors share the response and recovery planning experience of the University of California (UC) Cancer Consortium in an effort to provide guidance to oncology practices. The UC Cancer Consortium was established in 2017 to bring together 5 UC Comprehensive Cancer Centers: UC Davis Comprehensive Cancer Center, UC Los Angeles Jonsson Comprehensive Cancer Center, UC Irvine Chao Family Comprehensive Cancer Center, UC San Diego Moores Cancer Center, and the UC San Francisco Helen Diller Family Comprehensive Cancer Center. The interventions implemented in each of these cancer centers are highlighted, with a focus on opportunities for a redesign in care delivery models. The authors propose that their experiences gained during this pandemic will enhance pre-pandemic cancer care delivery.


Subject(s)
COVID-19 , Cancer Care Facilities/organization & administration , Delivery of Health Care/organization & administration , Neoplasms/therapy , COVID-19/complications , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , California/epidemiology , Global Health , Humans , Infection Control/methods , Infection Control/organization & administration , Neoplasms/complications , Neoplasms/diagnosis , Pandemics , Telemedicine/methods , Telemedicine/organization & administration
SELECTION OF CITATIONS
SEARCH DETAIL